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a b s t r a c t

In this paper the transverse vibration characteristics of piezoceramic rectangular plates,

with completely free and completely clamped boundary conditions, are investigated by

theoretical analysis, experimental measurement, and numerical calculation. Using Ritz’s

method together with the equivalent material constants carries out the theoretical

evaluations for resonant frequencies. Two optical techniques, amplitude-fluctuation

electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV),

based on the displacement measurement are employed to determine the transverse

vibration modes. In addition, the impedance analyzer is also used to measure the

electrical impedance variation. From the experimental results, it is found that

the transverse vibration modes cannot be obtained by impedance analysis for the

completely free piezoceramic plate; however, certain modes can be unexpectedly

measured for the completely clamped piezoceramic plate owing to the imperfect

boundary simulation in experiments. Numerical calculations using the finite element

method (FEM) are performed and good agreement is obtained when comparing the

theoretical analysis and experimental measurements. According to the theoretical

analysis, frequency parameter versus equivalent Poisson’s ratios ranging from 0.25 to

0.6 with different aspect ratios and material types are also presented for the first three

transverse modes.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that piezoelectric materials have been widely used in electromechanical sensors and actuators,
ultrasonic devices, electro-optic modulators, etc. In studying the vibration characteristics of piezoelectric materials,
researchers paid more attention to the crystals in the early periods of research. Dökmecı́ [1] reviewed the representative
applications to vibrations for one- and two-dimensional crystals with some different configurations before 1980. Due to the
difficulty of manufacture and the limitations of crystallographic directions for crystals, piezoelectric ceramics made of lead
zirconate titanate (PZT) have been adopted for most engineering applications in the past few decades. These piezoceramics
have the advantages of lower cost, higher mechanical strength, better piezoelectric activity, and easier shape forming.
Although the vibration characteristics of piezoelectric plates can be analytically determined by linear piezoelectricity and
plate theory [2]; completely exact solutions are obtained usually for circular or annular types with certain simplifications.
Ivina [3] studied the symmetric modes of vibration for circular piezoelectric plates to determine the resonant and
anti-resonant frequencies, radial mode configurations, and the optimum geometrical dimensions to maximize the dynamic
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electromechanical coupling coefficient. Huang et al. [4] investigated the vibration of thin piezoceramic disks with
completely free boundary conditions for transverse, tangential and radial extensional modes by theoretical analysis,
numerical simulation, and experimental measurement. Huang [5] discussed the transverse vibration of piezoceramic
annular plates with four different boundary conditions (free–free, fixed–fixed, free–fixed, and fixed–free) and then
classified the variation of resonant frequencies into three groups.

In general, the theoretical analysis for piezoelectric rectangular plates is more complicated because there is no exact
solution to the governing equations. Regarding the manipulation for elastic rectangular plates, the series-form
trigonometric or trial functions are usually employed to satisfy the electrical or mechanical boundary conditions. Holland
[6] used the Rayleigh–Ritz method to study the extensional modes of PZT rectangular plates and classified the modes into
four distinct symmetry types. Lee and Jiang [7] derived the state space method to obtain solutions for a piezoelectric
rectangular plate with simply supported boundary conditions. Eight state variables (three displacement components,
electrical potential, three out-of-plane stresses, and transverse electrical displacement) were investigated and the results
were compared with the purely elastic case. Moreover, Chen et al. [8] presented the non-dimensional state equations to
simplify the free vibration analysis of simply-supported piezoelectric ceramic plates. Batra and Liang [9] considered the
effect and optimization of simply-supported rectangular laminated plates with embedded PZT layers as vibrating close to
resonance. Chang and Tung [10] developed the electro-elastic theory with the Kirchhoff–Love hypothesis to obtain the
electromechanical characteristics of two-layered rectangular laminated plates with completely clamped edges. By
experimental measurement and FEM calculations, Ma and Lin [11] investigated the transverse vibration of piezoceramic
rectangular plates with completely free and completely fixed boundary conditions. Ramirez et al. [12,13] developed a
discrete-layer model to investigate the free vibration behavior of magneto-electro-elastic laminates and graded composite
plates. Rectangular composite plates with different boundary conditions, aspect ratios, and gradation types were studied in
their work.

Referring to the literature, the transverse vibration characteristics were usually investigated for the piezoceramic
laminated plates or bimorphs; moreover, most of articles presented the theoretical or numerical analysis and only few
experimental investigations were provided, especially by using the identification of resonant frequencies and the
corresponding mode shapes. In this paper, the transverse vibration of piezoceramic rectangular plates with completely free
(free–free–free–free, FFFF) and completely clamped (clamped–clamped–clamped–clamped, CCCC) edges are investigated
in three aspects: theoretical analysis, numerical simulation, and experimental measurement. The theoretical calculation is
carried out by Ritz’s method together with the named equivalent constant method, as proposed by Huang [14]. By using the
proposed methodology, the electrical field consideration is suppressed and the transverse vibration analysis of
piezoceramic rectangular plates is undertaken once the corresponding conditions of isotropic plates are determined. To
validate the theoretical results, this study utilizes two optical techniques, amplitude-fluctuation electronic speckle pattern
interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), and the impedance analyzer to experimentally investigate
the vibration behavior of piezoceramic rectangular plates in resonance. The advantage of using the AF-ESPI method is that
both resonant frequencies and the corresponding mode shapes can be obtained simultaneously from the experimental
procedure. Besides the AF-ESPI measurement, the resonant frequencies measured by LDV system and impedance analyzer
can provide additional information about the piezoceramic plate vibration. Commercially available finite element analysis
software is also used to provide the numerical simulation of resonant frequencies and mode shapes. Good agreements of
the resonant frequencies are obtained for theoretical, experimental, and numerical results; in addition, the mode shapes
obtained by the AF-ESPI method also agree well with the numerical results. Based on the theoretical calculations, the
dependence of transverse resonant frequencies on equivalent Poisson’s ratio ranging from 0.25 to 0.6 is investigated with
five different aspect ratios ð13;

1
2;1;2; and 3Þ. To verify the suitability of the proposed theoretical analysis, one isotropic

aluminum material (6061T6) and four piezoceramic materials (BaTiO3, PZT-4, PZT-5, and PIC-151) are selected to perform
the FEM calculations and then compare with the theoretical predictions.

2. Ritz’s method with equivalent constants

For a piezoceramic thin plate vibrating at angular frequency o, after suppressing the time-dependent term, the
maximum potential and kinetic energy of the plate are given by

Vmax ¼
D̄
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2W

qx2

q2W

qy2
þ 2ð1� n̄Þ q2W

qxqy

 !2
2
4

3
5dx dy (1)

Tmax ¼
1

2
rho2

Z Z
W2 dx dy (2)

where W ¼Wðx; yÞ is the transverse deflection function, r is the density, and h is the plate thickness. In Eq. (1), the
equivalent Poisson’s ratio n̄ and flexural rigidity D̄ are defined as [14]

n̄ ¼
2� ð1� npÞð2� k2
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where np ¼ �sE
12=sE

11 is the planar Poisson’s ratio, kp ¼
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q
is the planar electromechanical coupling

coefficient, sE
11 and sE

12 are the compliance constants at constant electrical field, d31 is the piezoelectric constant, and �T
33 is

the dielectric constant at constant stress. By equating Eqs. (1) and (2), the resonant frequency fr can be determined when
Wðx; yÞ satisfies the mechanical boundary conditions and minimizes the expression as

o2 ¼ ð2pf rÞ
2 ¼

2

rh

VmaxR R
W2 dx dy

(5)

If the rectangular plate is bounded by the edges x ¼ 0, x ¼ a, y ¼ 0, and y ¼ b as shown in Fig. 1, Wðx; yÞ can be
represented as a linear series of assumed functions in the form of

Wðx; yÞ ¼
Xp

m¼1

Xq

n¼1

AmnXmðxÞYnðyÞ (6)

The beam functions XmðxÞ and YnðyÞ are admissible so that the boundary conditions of the beams match those of the plate
in the x- and y-direction, respectively; this will guarantee satisfaction of the essential boundary conditions. Three types of
beam functions (clamped–clamped, clamped–free, and free–free) can be adopted to construct six cases for rectangular
plates, including combinations of clamped or free boundary conditions. By substituting the expression of Wðx; yÞ into
Eq. (5), the angular frequencies o are minimized by taking the partial derivative with respect to each coefficient Amn; this
results in a system of linear homogeneous equations as follows:
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Fig. 1. Geometry and coordinate system of the piezoceramic rectangular plate.
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In Eq. (9-2), the numerical values of �m and �n are given by Young [15]. The eigenvalues l for resonant frequencies are
obtained when the coefficient determinant of linear systems (Eq. (7)) equals zero. It is significant to note that, when the
equivalent constants n̄ ¼ n and D̄ ¼ Eh3=12ð1� n2Þ, in which n is the Poisson’s ratio and E is the Young’s modulus, then
the theoretical derivation will serve as the case for isotropic rectangular plates.

The theoretical calculations by Eq. (7) are carried out for a 36-term series by taking both m and n equal to 1, 2, 3, 4, 5,
and 6. It is indicated that the corresponding 36 linear equations are divided into two groups, and then two corresponding
18�18 symmetric matrices are developed for the coefficient Cij

mn. One of the two groups includes only n ¼ 1;3;5 and
represents the symmetrical modes with respect to the line y ¼ b=2. The other group includes only n ¼ 2;4;6 and stands for
the anti-symmetrical modes with respect to the line y ¼ b=2.

3. Principle of experimental technique

3.1. Amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI)

The most familiar way that ESPI is used for vibration analysis is the time-averaged method with an image sensor
integrating the speckle interferogram field pixel by pixel. The term ‘‘time-averaged’’ implies that the vibration
measurement includes many periods of object motion during the camera-capturing period. For the out-of-plane full-
field vibration measurement using the AF-ESPI method, the first image is recorded as a reference after the specimen
vibrates periodically. As the vibration of the specimen continues, the vibration amplitude changes from a to a+Da because
of the electronic noise or instability of the apparatus. When the vibration amplitude variation Da is small, the first image is
subtracted from the second by the image processing system and the resulting image intensity can be expressed as

I ¼

ffiffiffiffiffiffiffiffiffi
IOIR

p
2
ðcos FÞ

2pDa

L
ð1þ cos CÞ

� �2

J0
2pa

L
ð1þ cos CÞ

� �					
					 (10)

where IO is the object light intensity, IR is the reference light intensity, F is the phase difference between object and
reference light, L is the wavelength of laser, and C is the angle between object light and observation direction.

In view of Eq. (10), it can be seen that the fringe patterns for the out-of-plane vibration obtained by AF-ESPI method are
dominated by a zero-order Bessel function J0; in fact, the fringe patterns for in-plane vibration exhibit characteristics
similar to those for out-of-plane vibration. The AF-ESPI method was first proposed by Wang et al. [16] for transverse
vibration measurement. Ma and Huang [17] provided a detailed discussion of the AF-ESPI method to investigate both the
out-of-plane and in-plane vibrations of piezoelectric rectangular parallelepipeds for a three-dimensional configuration.

3.2. Laser Doppler vibrometer (LDV)

An optical technique, the laser Doppler vibrometer (LDV), is developed from the principle of the Michelson
interferometer and the Doppler effect. The LDV measures the moving velocity or displacement of an object by detecting the
frequency shift of the laser. For the LDV system, a built-in dynamic signal analyzer (DSA) composed of the dynamic signal
analyzer software and a plug-in waveform generator board can provide the specimen with the swept-sine excitation signal.
With the help of the emitting excitation by DSA, the LDV system measures the dynamic responses of the specimen by
setting the beginning and ending frequencies for sweeping. In the analysis software, the swept-sine excitation signal is
taken as input and the response measured by the LDV is converted into the voltage signal and is taken as the output. After
the fast Fourier transform processing of the input and output with the DSA software, the ratio of output/input (‘‘gain’’) is
obtained.

4. A experimental investigations and theoretical discussions

The piezoceramic rectangular plates as shown in Fig. 1 with effective size a ¼ b ¼ 40 mm, and thickness h ¼ 0.5 mm are
selected to perform experimental and numerical investigations. The model number of piezoceramics is PIC-151 (Germany
Physik Instrument Company), whose material properties are listed in Table 1. Two opposite surfaces of the plate ðz ¼ �h=2Þ
are completely covered by CuNi electrodes and the plate is excited by an alternating voltage across the two electroded
surfaces. The thickness of the CuNi electrodes, which is applied by the sputtering technique, is in the range of 1mm.
Comparing with the plate thickness, the influence of the electrodes can be neglected for the experimental measurement
and theoretical analysis. There are two types of mechanical boundary conditions, FFFF and CCCC, to be discussed in this
study; as mentioned above, the symbols FFFF and CCCC represent piezoceramic rectangular plates with completely free and
completely clamped edges, respectively. To realize the completely clamped conditions in the experimental measurement,
the piezoceramic plate is mounted on a fixture by adhesive along all edges.

The full-field, time-averaged AF-ESPI optical systems are first used to perform the transverse (out-of-plane) vibration
measurements. The advantage of using the AF-ESPI method is that both resonant frequencies and the corresponding mode
shapes can be obtained simultaneously from the experimental procedure. A He–Ne laser with wavelength L ¼ 632.8 nm is
used as the coherent light source. We use a charge-coupled device (CCD) camera and a frame grabber with an onboard
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Table 1
Material properties of 6061T6, BaTiO3, PZT-4, PZT-5, and PIC-151.

Quantity 6061T6 BaTiO3 PZT-4 PZT-5 PIC-151

sE
11 (10�12 m2 N�1) – 9.15 12.3 16.4 16.83

sE
33

– 9.46 15.5 18.8 19.0

sE
12

– �2.75 �4.05 �5.74 �5.656

sE
13

– �2.89 �5.31 �7.22 �7.107

sE
44

– 22.73 39.0 47.5 50.96

sE
66

– 23.81 32.7 44.3 44.97

d31 (10�12 m V�1) – �78.4 �123 �172 �214

d33 – 190.8 289 374 423

d15 – 259.1 496 584 610

�T
11 (10�9 F m�1) – 15.792 13.054 15.31 17.134

�T
33

– 19.073 11.505 15.045 18.665

r (kg m�3) 2700 5700 7500 7750 7800

n 0.33 – – – –

E (109 N m�2) 70 – – – –

Mode
Index 

AF-ESPI 
Mode
Index

AF-ESPI 

(2,2)

590 Hz 555.4 Hz 

(4,1)

3031.5 Hz 

(1,3)

830 Hz 834.5 Hz 

(4,2)

3802.2 Hz 

(3,1)

1240 Hz 1295.8 Hz 

(4,3)

4610 Hz 4809.2 Hz 
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1450 Hz 1504.5 Hz 

(1,5)

5250 Hz 5569.0 Hz 
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2700 Hz 2826.8 Hz 

(5,1)
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(2,4)

2940 Hz 2993.8 Hz 

(2,5)

5970 Hz 6293.1 Hz 

FEM FEM 
Mode
Index 

AF-ESPI  
Mode
Index

AF-ESPI 

(4,4)

6690 Hz 7065.1 Hz 

(6,2)

10676 Hz 

(3,5)

7140 Hz 7591.5 Hz 

(3,6)

11090 Hz 11739 Hz 

(5,3)

7650 Hz 8112.5 Hz 

(2,6)

8960 Hz 9502.6 Hz 

(6,1)

9170 Hz 9714.8 Hz 

(4,5)

9660 Hz 10281 Hz 

FEM FEM 

Fig. 2. The transverse vibration modes obtained by AF-ESPI and FEM for the FFFF piezoceramic plate.
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digital signal processor to record and process the images. The laser beam is divided into two parts, the object and reference
beam, by a beamsplitter. The object beam travels to the specimen and is then reflected to the CCD camera. The reference
beam goes directly to the CCD camera via a mirror and a reference plate. Note that the optical path length and the light
intensities of these two beams are maintained equal in the experimental setup. The CCD camera converts the intensity
distribution of the interference pattern into a corresponding video signal at 30 frames per second. The signal is
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Mode
Index 

AF-ESPI Mode
Index

AF-ESPI 

(1,1)

1700 Hz 1879.1 Hz 

(3,3)

10410 Hz 11407 Hz 

(1,2)

3460 Hz 3829.5 Hz 

(2,4)

10610 Hz 12549 Hz 

(2,2)

5110 Hz 5633.5 Hz 

(3,4)

13870 Hz 15324 Hz 

(1,3)

6210 Hz 6846.3 Hz 

(5,1)

14980 Hz 16006 Hz 

(3,2)

7770 Hz 8572.3 Hz 

(2,5)

15990 Hz 17604 Hz 

(4,1)

9950 Hz 10929 Hz 

(4,4)

19153 Hz 

Mode
Index 

AF-ESPI 

(5,3)

18440 Hz 20317 Hz 

(1,6)

20360 Hz 22059 Hz 

(6,2)

21400 Hz 23650 Hz 

FEM FEM 

FEM

Fig. 3. The transverse vibration modes obtained by AF-ESPI and FEM for the CCCC piezoceramic plate.
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electronically processed and finally converted into an image on the video monitor. The interpretation of the interference
fringe image is similar to the reading of a contour map. As seen in the experimental results, the fringe pattern corresponds
to the mode shape and the brightest fringes represent the nodal lines at resonance. Fig. 2 shows the experimental and
numerical results for the first 20 mode shapes of the FFFF piezoceramic plate and Fig. 3 shows the first 15 mode shapes of
the CCCC piezoceramic plate. In Figs. 2 and 3, we indicate the phase of displacement for finite element results as dark or
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light lines, with the dark lines in the opposite direction to the light lines. The transition from dark lines to light lines
corresponds to zero displacement lines, also called nodal lines. The zero-order fringe, which is the brightest fringe in the
experimental results, represents the nodal lines of the vibrating piezoceramic plates at resonance. The mode index (m, n)
shown in Figs. 2 and 3 indicates that the mode shape contains (m�1) and (n�1) nodal lines parallel to the y- and x-axis,
respectively; however, this excludes the nodal lines along the clamped edges. The mode shapes obtained by AF-ESPI
measurement can be checked by the nodal lines and fringe patterns with the numerical results. Excluding some mode
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Fig. 5. LDV gain spectrum of transverse vibration modes for the piezoceramic CCCC plate.
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Fig. 4. LDV gain spectrum of transverse vibration modes for the piezoceramic FFFF plate.
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Table 3
Results of transverse resonant frequencies obtained by theory, FEM, LDV, and AF-ESPI for the CCCC piezoceramic plate.

Mode index (a) Theory (Hz) (b) FEM (Hz) (c) LDV (Hz) (d) AF-ESPI (Hz) Error (a)/(b) (%) Difference (c)/(d) (%)

(1,1) 1868.9 1879.1 1725 1700 �0.54 1.47

(1,2) 3812.2 3829.5 3465 3460 �0.45 0.14

(2,2) 5624.9 5633.5 5115 5110 �0.15 0.10

(1,3) 6835.3 6846.3 6215 6210 �0.16 0.08

(3,2) 8580.0 8572.3 7780 7770 0.09 0.13

(4,1) 10,936 10,929 9970 9950 0.07 0.20

(3,3) 11,450 11,407 10,395 10,410 0.38 �0.14

(2,4) 12,600 12,549 10,705 10,610 0.41 0.90

(3,4) 15,434 15,324 13,970 13,870 0.72 0.72

(5,1) 16,061 16,006 14,920 14,980 0.34 �0.40

(2,5) 17,723 17,604 15,925 15,990 0.68 �0.41

(4,4) 19,380 19,153 – – 1.18 –

(5,3) 20,528 20,317 18,525 18,440 1.04 0.46

(1,6) 22,740 22,059 20,440 20,360 3.09 0.39

(6,2) 25,821 23,650 21,300 21,400 9.18 �0.47

Table 2
Results of transverse resonant frequencies obtained by theory, FEM, LDV, and AF-ESPI for the FFFF piezoceramic plate.

Mode index (a) Theory (Hz) (b) FEM (Hz) (c) LDV (Hz) (d) AF-ESPI (Hz) Error (a)/(b) (%) Difference (c)/(d) (%)

(2,2) 560.5 555.4 575 590 0.92 �2.54

(1,3) 879.0 834.5 835 830 5.33 0.60

(3,1) 1336.3 1295.8 1235 1240 3.13 �0.40

(3,2) 1566.2 1504.5 1535 1450 4.10 5.86

(3,3) 2913.0 2826.8 2655 2700 3.05 �1.67

(2,4) 3199.6 2993.8 2930 2940 6.87 �0.34

(4,1) 3160.5 3031.5 – – 4.26 –

(4,2) 3994.5 3802.2 3610 – 5.06 –

(4,3) 4934.7 4809.2 4610 4610 2.61 0.00

(1,5) 5903.4 5569.0 5320 5250 6.00 1.33

(5,1) 6469.9 6276.2 5885 5880 3.09 0.09

(2,5) 6662.6 6293.1 6030 5970 5.87 1.01

(4,4) 7318.3 7065.1 6755 6690 3.58 0.97

(3,5) 7788.7 7591.5 7230 7140 2.60 1.26

(5,3) 8505.1 8112.5 7690 7650 4.84 0.52

(2,6) 10,652 9502.6 9120 8960 12.09 1.79

(6,1) 10,139 9714.8 9255 9170 4.36 0.93

(4,5) 10,663 10,281 9780 9660 3.72 1.24

(6,2) 11,282 10,676 – – 5.68 –

(3,6) 12,286 11,739 11,135 11,090 4.66 0.41
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shapes that are too blurry to be captured by AF-ESPI, excellent agreement between experimental measurement and
numerical simulation is found for both FFFF and CCCC piezoceramic plates.

To compare with the results obtained by AF-ESPI, the other point-wise optical technique called the laser Doppler
vibrometer (LDV) (AVID, Ahead Optoelectronics Inc.) is also employed to measure the transverse vibration modes. The
experimental gain spectrums of FFFF and CCCC piezoceramic plates are shown in Figs. 4 and 5, respectively; the peaks
appearing in the frequency response curve stand for the resonant frequencies of transverse vibration. It is indicated that, for
the CCCC piezoceramic plate shown in Fig. 5, there are four ‘‘additional’’ resonant frequencies being measured for which
the corresponding mode indices could not be found. However, this unexpected situation does not occur with the FFFF
piezoceramic plate, so this phenomenon should result from the imperfect simulation of clamped edges for the CCCC
piezoceramic plate.

Table 2 shows the first 20 transverse resonant frequencies of the FFFF piezoceramic plate obtained by theoretical
prediction, FEM calculation, LDV, and AF-ESPI; and Table 3 shows the results of first 15 transverse resonant frequencies for
the CCCC piezoceramic plate. The FEM calculations of resonant frequencies as well as mode shapes are investigated by the
ABAQUS finite element package [18]. The 20-node three-dimensional solid piezoelectric element ‘‘C3D20RE’’, standing for
the 20-node quadratic brick element with reduced integration in ABAQUS, is selected for the numerical analysis. It is
recognized that, in Tables 2 and 3, the theoretical predictions are generally higher than the finite element results, except for
the first four modes of the CCCC piezoceramic plate. For the resonant frequencies of modes (2,4) and (4,1) in Table 2, the
order of modes changes when comparing the results between theoretical and finite element calculations, and so do the
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modes (2,6) and (6,1). As shown in Tables 2 and 3, the theoretical predictions agree well with the finite element results, and
the experimental results are also in good agreement between the AF-ESPI and LDV measurements. The error between
theoretical and numerical results can be reduced by increasing the number of m and n, i.e., increasing the dimension of
matrix Cij

mn. The thickness of the piezoceramic plate also shows significant influence on the theoretical and numerical
results. This is because the two-dimensional plate hypotheses and three-dimensional element simulations are employed
for theoretical and FEM calculations, respectively. On the other hand, the discrepancies between theoretical and
experimental values are probably due to the material constant accuracy, the numerical approximation method and,
especially, the clamped boundary condition of the plate.

With reference to the different aspect ratios a=b, the dependence of transverse frequency parameter l on equivalent
Poisson’s ratio n̄ ranging from 0.25 to 0.6 is investigated. Figs. 6(a)–(c) show the results of the first three vibration modes
versus different n̄ for the FFFF piezoceramic plate, including mode indices (2,2), (1,3), and (3,1). In Fig. 6, the square root of
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frequency parameter ð
ffiffiffi
l
p
Þ is plotted as the ordinate to exhibit the frequency variation for constant aspect ratio; and five

different aspect ratios ða=b ¼ 1
3;

1
2;1;2; and 3Þ are employed for the theoretical calculations. To verify the validity of the

proposed theoretical methodology, one isotropic aluminum material (6061T6) and four piezoceramic materials (BaTiO3,
PZT-4, PZT-5, and PIC-151) are selected to perform the calculations by FEM. Their material properties are listed in Table 1. As
shown in Fig. 6, the frequency parameter l decreases when the equivalent Poisson’s ratio n̄ increases, except for mode (3,1)
with a=b ¼ 1. Figs. 7(a)–(c) show the frequency parameter variations of the CCCC piezoceramic plate for mode indices (1,1),
(1,2), and (2,2). It is noted that, by theoretical calculation, the frequency parameter does not depend upon the Poisson’s
ratio n̄ with the completely clamped boundary. However, the resonant frequency depends upon n̄ because the flexural
rigidity D̄ contains n̄. In light of this result, the errors for the CCCC piezoceramic plate between theoretical and numerical
calculations are smaller than those for the FFFF piezoceramic plate shown in Fig. 6. In Fig. 7(b), it is noteworthy that the
curves for a=b ¼ 1

3 and 1
2 are very close to each other and this also occurs for the FEM calculations. However, the nearly
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identical value
ffiffiffi
l
p

for two different aspect ratios a/b will result in two distinct resonant frequencies that depend on the
dimensional term

ffiffiffiffiffiffiffiffi
a3b
p

.
Figs. 8 and 9 show the impedance variations of the FFFF and CCCC piezoceramic plates, respectively, where experimental

results are obtained by an impedance/gain-phase analyzer HP-4194A (Hewlett Packard). The local minima and maxima
appearing in the impedance curve correspond to the resonant and anti-resonant frequencies, respectively. It is significant
that the resonant frequencies shown in Fig. 8 are much higher than those shown in Table 2 for transverse vibration
modes. With the aid of FEM analysis, these two vibration modes shown in Fig. 8, as measured by impedance analyzer, are
the in-plane extensional modes. This reveals that the transverse vibration modes of the FFFF piezoceramic plate cannot be
obtained by impedance analysis. On the other hand, the two vibration modes that indicated in Fig. 9 are not extensional
modes but transverse modes, because the resonant frequencies correspond to the modes (2,5) and (1,6) in Table 3. As
compared with the case of the FFFF piezoceramic plate, it can be seen that the transverse modes for the CCCC piezoceramic
plate, as measured by impedance analysis, are induced due to the clamped edges. In other words, inasmuch as the
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imperfect clamped boundary simulation, the transverse modes will be unexpectedly detected with the impedance
variation.

5. Conclusions

Concerning the rectangular plates with completely free and completely clamped boundaries, it is analytically difficult to
obtain exact solutions for the vibration analysis, even for an isotropic material. Herein Ritz’s method together with
equivalent constants provides a more convenient strategy to investigate the transverse vibration characteristics of
piezoceramic rectangular plates. The advantages of using this methodology are that the electrical field consideration can be
neglected, and the vibration analysis of piezoceramic plates is carried out once the corresponding conditions of isotropic
plates are given. By means of the numerical calculations and two experimental measurements (AF-ESPI and LDV) employed
in this study, consistency between these results implies that the theoretical prediction has good accuracy and gives the
upper bounds for most of the transverse resonant frequencies. With the different aspect ratios and material types of
piezoceramic plates, the frequency parameter variations are theoretically discussed and agree well with the FEM
calculations. In addition, it is experimentally found that the impedance analyzer cannot measure the transverse vibration
modes of piezoceramic plates; however, if the clamped boundary simulation is imperfect, the transverse vibration modes
will be unexpectedly measured.
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